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We systematically examine how the structure of superheavy nuclei depends on the equation of state
of nuclear matter. In doing so, we first describe the neutron and proton distributions of such nuclei
within a simplified Thomas-Fermi framework in such a way as to reproduce empirical masses and
charge radii of stable nuclei. We then calculate the central and Coulomb parts of the single-particle
potential, which are complemented by the spin-orbit part that makes the resultant single-particle
spectra for 208Pb consistent with the empirical behavior. We find that the incompressibility of
symmetric nuclear matter significantly affects the calculated Z = 28, 50, 82 gaps for 278113 and
294118.

Recent experiments to synthesize superheavy nuclei
not only produced several new elements, but also led
to implications for the island of stability on the chart
of nuclides [1]. Even in relatively lighter nuclides such
as 208Pb, however, it is poorly known how the single-
particle levels look like well below the Fermi energy. This
is related to uncertainties in the spin-orbit part of the
single-particle potential, which scales as the gradient of
the nuclear density distribution. This distribution is in
turn connected with the equation of state (EOS) of nu-
clear matter in a way clearer for heavier nuclei [2]. It is
thus important to ask the question of how the EOS of nu-
clear matter affects the internal shell structure of heavy
and superheavy nuclei through the spin-orbit potential.

So far, the EOS of nuclear matter has yet to be well
determined even at subnuclear densities [3]. Empirical
data such as nuclear masses and radii are not sufficient
to severely constrain the EOS, while many-body calcula-
tions depend on what kind of nuclear forces and approx-
imate procedures are adopted even in the simple case
of pure neutron matter. We thus start with model EOSs
that account for possible uncertainties. In previous works
[2, 4, 5], two of the present authors address the questions
of how such EOSs affect the macroscopic prediction of
radii and masses of unstable neutron-rich nuclei. In this
case, the poorly known density dependence of the sym-
metry energy controls the radii and masses through the
bulk and surface properties, respectively. In the present
work, we consider the EOS effect on the single-particle
levels of superheavy nuclei 278113 and 294118, which were
synthesized in laboratories [6, 7] and recently given an
element name as nihonium (Nh) and oganesson (Og), re-
spectively.

For the purpose of clarifying such effects, we first cal-
culate, within a simplified Thomas-Fermi model of a nu-
cleus, the neutron and proton density distributions in a
manner that is dependent on the EOS while reproducing
empirical masses and charge radii of stable nuclei. From
the optimal neutron and proton density distributions, we
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evaluate the central, Coulomb, and spin-orbit parts of the
neutron and proton single-particle potentials, in which
we determine the effective range of the nuclear force and
the strength of the spin-orbit potential in such a way as
to reproduce empirical single-particle energies of 208Pb.
We then solve the Schrödinger equations to obtain the
neutron and proton single-particle levels of superheavy
nuclei for various EOSs. In this work, for simplicity, we
assume that the nuclear density distributions are spher-
ically symmetric.

We begin by describing the total energy of a nucleus of
charge number Z and neutron number N in terms of the
local neutron and proton density distributions nn(r) and
np(r) by using the following energy density functional:

E = Eb + Eg + EC +Nmnc
2 + Zmpc

2, (1)

where

Eb =

∫

d3rn(r)w [nn(r), np(r)] (2)

is the bulk energy with n(r) = nn(r) + np(r) and the
energy w per nucleon of uniform nuclear matter,

Eg = F0

∫

d3r|∇n(r)|2 (3)

is the gradient energy with adjustable constant F0,

EC =
e2

2

∫

d3r

∫

d3r′
np(r)np(r

′)

|r− r′| (4)

is the Coulomb energy, and mn (mp) is the neutron (pro-
ton) mass.

The bulk energy (2) dominates Eq. (1), while being
controlled by the energy w of uniform nuclear matter
within the framework of the local density approximation.
For w, just like the previous works [2, 4, 5] based on Eq.
(1), we adopt the phenomenological EOS models in the
form of [8]

w(nn, np) = [t(nn, np) + v(nn, np)] /n (5)

with the kinetic energy density,

t =
3~2(3π2)2/3

10mn
(n5/3

n + n5/3p ) (6)
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and the potential energy density,

v = (1− α2)vs(n) + α2vn(n), (7)

where

vs = a1n
2 +

a2n
3

1 + a3n
(8)

and

vn = b1n
2 +

b2n
3

1 + b3n
(9)

are the potential energy densities for symmetric nuclear
matter and pure neutron matter, and α = (nn − np)/n
is the neutron excess.

It is useful to note that near the saturation point of
symmetric nuclear matter, the energy per nucleon given
by Eq. (5) reduces to a familiar expansion, namely [9],

w = w0+
K0

18n20
(n−n0)2+

[

S0 +
L

3n0
(n− n0)

]

α2. (10)

Here w0, n0, and K0 are the saturation energy, the sat-
uration density, and the incompressibility of symmet-
ric nuclear matter. L and S0 are associated with the
density dependent symmetry energy coefficient S(n) via
S0 = S(n0) and L = 3n0(dS/dn)n=n0

. As the neutron
excess increases from zero, the saturation point moves
from (n0, w0) in the density versus energy plane. Up to
second order in α, the saturation energy ws and density
ns are given by

ws = w0 + S0α
2 (11)

and

ns = n0 −
3n0L

K0
α2. (12)

The six parameters a1, · · · , b3 are related to the EOS
parameters n0, w0, K0, S0, and L. As in Refs. [2, 4, 5],
we assume various sets of K0 and L in the range of
0 < L < 160 MeV and 180 MeV ≤ K0 ≤ 360 MeV,
while the others are determined in such a way that the
mass and charge radius of stable nuclei that can be cal-
culated from optimization of Eq. (1) are consistent with
the empirical values. We remark that the parameter b3,
which controls the EOS of matter for large neutron excess
and high density while having little effect on the satura-
tion properties of nearly symmetric nuclear matter, is set
to the typical value 1.58632 fm3, which was obtained by
one of the authors [8] in such a way as to reproduce the
neutron matter energy of Friedman and Pandharipande
[10].

For fixed (K0, L), we optimize Eq. (1) by assuming the
nucleon distributions ni(r) (i = n, p) of a nucleus of given
Z and N , where r is the distance from the center of the
nucleus, to be

ni(r) =



















nini

[

1−
(

r

Ri

)ti
]3

, r < Ri,

0, r ≥ Ri.

(13)

Here, Ri roughly represents the nucleon distribution ra-
dius, ti the relative surface diffuseness, and nini the cen-
tral number density. We then determine n0, w0, S0, and
F0 by fitting the resultant masses and charge radii to
the experimental values, which leads to about 200 sets
of the EOS models as shown in Ref. [2]. Note that the
present analysis can be regarded as a simplified version
of the Thomas-Fermi theory, which assumes the form of
ni(r) but still can well reproduce the empirical charge
distribution of stable nuclei.

By building the EOS models described above into Eq.
(1), we have calculated the nucleon density distributions
for 208Pb, 278113, and 294118, from which we shall calcu-
late the single-particle energies. As clarified in Ref. [2],
the results show the tendency that the central density
decreases with L, while the surface diffuseness decreases
with K0. The latter feature plays a vital role in affecting
the internal shell structure via the spin-orbit potential.

We now move on to the single-particle energies by con-
structing the single-particle potential from the optimal
nucleon density distributions obtained above. We first
calculate the single-particle potential U0(i) (i = n, p) for
uniform nuclear matter as

U0(i) =
∂v(nn, np)

∂ni
. (14)

By substituting the optimal distributions into Eq. (14),
we obtain the central part of the single-particle potential
within the local density approximation in which the range
of the nuclear force is set to zero. Here, as in Ref. [11],
we incorporate the finite range of the nuclear force into
the potential U0(i)(r) via

Ui(r) =

(

1√
πκ

)3 ∫

d3r′U0(i)(r
′) exp

(

−|r− r
′|2

κ2

)

,

(15)
where κ is the adjustable parameter that corresponds to
the range of the nuclear force. Note that in the Thomas-
Fermi framework as described above, the gradient energy
(3) represents the correction term due to the finite range
of the nuclear force.

The Coulomb potential, which takes effect solely for
protons, reads as

VC(r) =
δEC [np(r)]

δnp(r)
, (16)

where the density distributions are the optimal ones.
Finally, we set the spin-orbit part of the single-particle

potential as

VLS(r) =
1

r

{

λ1
dn(r)

dr
± λ2

d

dr
[nn(r)− np(r)]

}

l · s,
(17)

where l is the orbital angular momentum, s is the spin
angular momentum, λ1 and λ2 are the adjustable param-
eters that control the strength of the isoscalar and isovec-
tor parts of the spin-orbit potential, and ± are taken for
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neutrons (+) and protons (−). This part is crucial to the
internal shell structure, while being sensitive to the EOS
of nuclear matter, the incompressibility in particular.

We proceed to calculate the single-particle energies ε
by solving the Schrödinger equations for neutrons and
protons,

[

− ~
2

2mn
∆+ Un(r) + VLS(r)

]

ψ(r) = εψ(r), (18)

[

− ~
2

2mp
∆+ Up(r) + VC(r) + VLS(r)

]

ψ(r) = εψ(r).(19)

To determine the parameters κ, λ1, and λ2 in such a way
as to reproduce the experimental single-particle energies
of 208Pb near the Fermi energies, we solve Eqs. (18) and
(19) for each EOS model. As a result of this fitting, the
parameters κ, λ1, and λ2 are constrained as κ = 1.15–
1.35 fm, λ1 = 170–210 MeV fm5, and λ2 = 10–170 MeV
fm5.
In Fig. 1, we illustrate the EOS dependence of the

single-particle energies of 208Pb. Here, we adopt the five
EOS models with (K0, L) = (180, 5.66), (180, 52.2), (230,
42.6), (360, 12.8), and (360, 146) in MeV; the EOS of
(230, 42.6) is a typical case, while the others are extreme
ones. Hereafter, we refer to these five EOS sets as G,
A, E, I, and C, according to Fig. 1 in Ref. [4]. The
corresponding values of κ, λ1, and λ2 are tabulated in
Table I. We can observe that the neutron and proton
levels near the respective Fermi level are well constrained
from the fitting for all the EOS models, while the Z =
28, 50 gaps decrease with K0 to an extent in which they
are no longer main gaps. We remark in passing that the
neutron internal shell structure is comparatively rather
insensitive to the EOS models (see Table II) and that the
proton and neutron low-lying levels go up with increase
in K0. The latter reflects the fact that the kinetic energy
decreases with increasing K0, a feature related to the
correlation between K0 and n0 that comes from fitting
to empirical charge radii of stable nuclei [2].

Let us now show the results for 278113 and 294118.
The Z = 28, 50, 82 gaps decrease with K0 and, more im-
portantly, are no longer main gaps even for the smallest
K0, as illustrated in Figs. 2 and 3 as well as in Table
II. The N = 50, 82, 126 gaps also decrease with K0, but
remain main gaps except for the largest K0. Such reduc-
tion in the gaps can be seen, e.g., in the previous work

TABLE I: The spin-orbit and range parameters for various
EOS sets.

EOS G A E I C

K0 (MeV) 180 180 230 360 360

L (MeV) 5.66 52.2 42.6 12.8 146

κ (fm) 1.15 1.17 1.22 1.31 1.34

λ1 (MeV fm5) 177 181 184 188 202

λ2 (MeV fm5) 10.7 20.5 28.2 34.4 138

EOS G EOS A EOS E  EOS I EOS C  EXP.

28

50

82

114

EOS G EOS A EOS E  EOS I EOS C  EXP.

50

82

126

184

FIG. 1: 208Pb proton (upper) and neutron (lower) single-
particle energy levels calculated for various EOS sets. The
Fermi levels are drawn in thick red lines. The last column in
each panel denotes the experimental data [12].

by Dudek [13] who used various sets of the Woods-Saxon
potentials that reproduce the experimental data for the
single-particle level spectra of doubly magic nuclei, al-
though the K0 dependence was not discussed therein.
Finally, we emphasize that the present analysis is not

relevant to the prediction of the location of the stability
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EOS G EOS A EOS E  EOS I EOS C

28

50

82

114

EOS G EOS A EOS E  EOS I EOS C

50

82

126

184

FIG. 2: 278113 proton (upper) and neutron (lower) single-
particle energy levels calculated for various EOS sets. The
Fermi levels are drawn in thick red lines.

island. This is because the fitting to the experimental
single-particle energies of 208Pb and the adopted form
of the spin-orbit potential (17) severely constrain the lo-
cation to around (Z,N) = (114, 184), in contrast with,
e.g., the previous work based on various mean-field cal-
culations [14]. We also remark that the present analysis
neglects possible deformations, which are predicted to be

EOS G EOS A EOS E  EOS I EOS C

28

50

82

114

EOS G EOS A EOS E  EOS I EOS C

50

82

126

184

FIG. 3: Same as Fig. 2 in the case of 294118.

relatively weak for 294118 but significant for 278113 (e.g.,
Ref. [15]).

In summary, we have constructed the single-particle
potential of superheavy nuclei in a manner that is de-
pendent on the EOS of nuclear matter. We have found
the sensitivity of the internal proton shell structure to
the incompressibility K0. Deduction of K0 from data on
the breathing modes of stable nuclei ranges 190–315 MeV
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TABLE II: The energy gaps (MeV) for various EOS sets.

EOS G A E I C

Z = 28 (208Pb) 2.54 2.48 2.41 2.27 2.13

Z = 50 (208Pb) 3.82 3.74 3.67 3.53 3.34

N = 50 (208Pb) 3.56 3.50 3.38 3.17 3.19

N = 82 (208Pb) 4.97 4.90 4.79 4.61 4.61

Z = 28 (278113) 1.88 1.84 1.79 1.69 1.61

Z = 50 (278113) 2.68 2.67 2.46 2.06 2.12

Z = 82 (278113) 1.94 1.96 1.69 1.21 1.31

N = 50 (278113) 2.58 2.55 2.45 2.26 2.25

N = 82 (278113) 3.41 3.25 3.01 2.65 2.43

N = 126 (278113) 2.88 2.73 2.48 2.11 1.94

Z = 28 (294118) 1.78 1.74 1.69 1.60 1.51

Z = 50 (294118) 2.45 2.43 2.33 1.84 1.89

Z = 82 (294118) 1.65 1.65 1.39 0.92 1.00

N = 50 (294118) 2.43 2.39 2.29 2.12 2.11

N = 82 (294118) 3.18 3.01 2.78 2.44 2.21

N = 126 (294118) 2.61 2.45 2.21 1.84 1.67

due to large systematic errors [16, 17]. Once uncertain-
ties in K0 are reduced, a better prediction is expected
to be made of the structure of superheavy nuclei. In the
present analysis, we have confined ourselves to spherical
nuclei. Deformations could play a role in modifying the
structure drastically in a far region from the island of sta-
bility. The location of the island of stability itself would
thus be desired to be specified.
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